Megaelectron Volt Computed Tomography at Site 300

Alex Dooraghi, Jerel Smith, Joe Tringe and Bill Brown

X-ray computed tomography at Site 300

- X-ray computed tomography (CT) is a nondestructive imaging modality that requires x-ray projections at various orientations to reconstruct an object
- At Site 300 we use Megaelectron Volt (MeV) CT to diagnose operation of conventional weapons
- The Site 300 system uses a dual capability (6 MeV or 9 MeV) x-ray source with a digital detector panel
- MeV x-ray CT systems are used to image radiographically dense objects
- Concern: As x-ray energy increases, (1) image contrast decreases and (2) safety considerations increase due to expanded radiation dose fields
- Our interest is examining Monte Carlo methods, specifically MCNP, to characterize image contrast and radiation dose field with the objective of maximizing image quality and minimizing radiation field

Three concerns motivate our investigation

Concern 1: Contrast is reduced with higher energy x-ray systems 6 MeV 1 MeV 0.121 MeV Dzierma et al (2014)

Concern 2:

Contrast is reduced by object scatter, which becomes more significant with increasing energy

Concern 3: High radiation doses

- LD50 is the amount of a material, given all at once, which causes the death of 50% (one half) of a population
- The LD50 for x-ray radiation is
 5 Gy
- The x-ray system at Site 300 can produce 30 Gy per minute 1 meter from target. Dose is reduced by:

Distance Shielding Time

Goal: Simulate MeV CT system design to maximize the image quality and minimize radiation dose field

MCNP6 is a general-purpose Monte Carlo code used to simulate neutron, photon, electron, or coupled neutron/photon/electron transport

MCNP has a built-in framework for Monte Carlo radiographic simulation to accelerate convergence

FIR Planar Image Grid Saxis (FS Card) Point Detector Source Contribution Object Geometry Reference Direction Source Geometry Reference $X_1 Y_1 Z_1$ Center of Grid Taxis (C Card) Particle X2 Y2 Z2 Scatter Contribution Transport Particle Sampled Scatter Source Point

Default MCNP Detector Response Options

Framework allows for scatter evaluation

Simulation Performed

- 1. How well does the MCNP simulation match the measurements?
- 2. How much of an improvement in image quality does MCNP predict from scatter reduction?
- 3. How well can we simulate the radiation field at site 300?

Simulation Performed

- 1. How well does the MCNP simulation match the measurements?
- 2. How much of an improvement in image quality does MCNP predict from scatter reduction?
- 3. How well can we simulate the radiation field at site 300?

Measurement data was taken using a 6 MeV x-ray spectrum

Cylindrical munition component principally composed of HMX, tungsten and aluminum encased in carbon fiber

X-Ray Spectrum:

6 MeV spectrum filtered with 3.175 mm of tantalum

Measured and simulated radiographs were processed to compare attenuation

1. Measured images (I_m) were processed as follow:

$$I_m = -ln\left(\frac{(I - I_d)}{(I_o - I_d)}\right) = \int \mu \, dL$$

where

I: Image with x-rays on and object in field of view

I_o: Image with x-rays on but no object in the field of view

I_d: Image with x-rays off

μ: Linear attenuation coefficient (mm⁻¹), which is a function of atomic number, density and x-ray energy

L: Material thickness (mm)

2. Similarly, simulated images (I_s) were process as:

$$I_{s} = -\ln\left(\frac{I}{I_{o}}\right) = \int \mu \, dL$$

Simulation that includes an energy dependent detector response and scatter best approximates measurement

Detector Response (DR)	Primary	Primary and Scatter
Energy Independent (EI)	27	20
Energy Dependent (ED)	5	0.6

Simulated reconstruction deviates by < 1 %

Simulation Performed

- 1. How well does the MCNP simulation match the measurements?
- 2. How much of an improvement in image quality does MCNP predict from scatter reduction?
- 3. How well can we simulate the radiation field at site 300?

At Site 300 we acquired CT data of a conventional explosive warhead using a 9 MeV spectrum

Longitudinal Cross Section

Transverse
Cross Section

Rendering of radial plate

Focus of analysis was on radial plate

Measured CT slice through radial plate

Simulation 1 considers primary and scatter

Simulation 2 considers only primary

LLNL-PRES-751684

Slit collimation was simulated to evaluate effect on contrast

Slit aperture effectively reduces scatter

Slit collimator can recover reduced contrast due to object scatter

Explosive 3 (Main Charge) Explosive 1 (Detonation Chain)

Explosive 2

(Boosters)

$$Contrast = \frac{ROI_2 - ROI_1}{ROI_2 + ROI_1}$$

ROI;: region of interest in material i

Contrast Results:	Polycarbonate to Explosive 1	Polycarbonate to Explosive 2	Polycarbonate to Explosive 3
PE Simulation 1 (P & S)	0.0691	0.1313	0.1079
PE Simulation 2 (P)	0.0889	0.1691	0.1254
Percent Change (%)	29	29	16
PE Simulation 3 (P & S, slit)	0.0878	0.1677	0.1246
Percent Change (%)	29	29	15

Polycarbonate

Summary

- Site 300 uses MeV CT to diagnose operation of non-nuclear weapon components
- MeV CT enables interrogation of items that may be too radiographically dense for keV systems
- Three concerns when using MeV CT:
 - 1. contrast is reduced with higher energy x-ray systems
 - 2. contrast is reduced by scattered radiation which becomes more significant with higher energy x-rays
 - 3. high radiation fields
- Goal of this work is to simulate MeV CT system to optimize design that maximizes image quality and minimizes radiation dose field
- Currently, we are using the MCNP Monte Carlo radiation transport code to evaluate:
 - 1. radiographic framework to assess detector response and scatter
 - 2. benefits of scatter reduction techniques
 - 3. radiation field at Site 300

Acknowledgements

NDE Radiographer Team

John Rodriguez (Senior Supervisor)

Kenn Morales

Luke Schrimsher

Health Physicists

Chad Hopponen

Eric Galicia

Feedback

Harry Martz

Aditya Mohan

Owen Mays

Ray Obenauf

Rosa Morales

Ian Ladner

Logan Bekker

Joshua Deotte

